Application of MFA as a decision support tool for waste management in small municipalities – case study of Serbia

Dr. Nemanja Stanisavljevic
Assistant professor

Faculty of Technical Sciences
Department of Environmental Engineering
Goal of the project?

Waste management

- OPTIMIZATION -

SYSTEMS

Waste water management
Material Flow Approach?

Waste management systems

Waste → Waste water
Off gas
Solids

Waste
Goal oriented decisions?

Available technology treatments

Legislation (EU Hierarhy)

- Protection of mankind and the environment
- Conservation of resources
- Sustainable waste management

„Economic boundaries = Affordability of waste management“
Selection of municipalities?

- **Krupanj**
 - 20191 st.
 - Region-Loznica

- **Bela Crkva**
 - 20688 st.
 - Region-Vršac

- **Aleksandrovac**
 - 23971 st.
 - Region-Kruševac

- **Svijalnac**
 - 33097 st.
 - Region-Lapovo

- **Kuršumlija**
 - 20688 st.
 - Region-Niš
Application of MFA for model development

Input:
- Waste generators
- Collection and transport
- Waste treatment

IV: Emissions & recyclables
- Regional waste management center
- Stock

DATA?

I: MSW
II: Agriculture waste
III: Industry waste

Recyclables
Data

Waste → MSW → 4 seasonal measurements
Waste water → Measurements → Quantity, Quality
Agriculture → Calculation
Industry → Questionaries
Waste generation measurements

Waste Quantity

- Disposal of measured waste
- Perform in period of one week i.e. when whole municipality was covered by collection

Waste Composition

- Samples collection (3 zones x 500kg)
- Measuring of each category
- Manual sorting (15 fractions)

Performed in 4 seasons

Implemented by:
Scenario development

Critical assessment of status quo

- Population under organized waste collection system
- Waste separation activities on a very low level
- No energy recovery from the waste
- Direct landfiling of biodegradable waste fractions without any pretreatment
- Unappropriate landfill practice (landfill gas, leachate)
Scenario development

- **Scenario 1** – waste transportation to the Regional center
- **Scenario 2** - waste separation plant and transport into the Regional center
- **Scenario 3** – waste separation plant, and composting plant
- **Scenario 4** – separation plant, anaerobic digestion and composting plant

- Primary selection of recyclable materials -
Scenario I
Scenario II
Scenario III
Collection system - A

<table>
<thead>
<tr>
<th>Waste category</th>
<th>Wet bin</th>
<th>Dry bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden waste</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>Other biodegradable waste</td>
<td>85%</td>
<td>15%</td>
</tr>
<tr>
<td>Paper</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Glass</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Cardboard</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Composite materials</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Metals – packaging and other</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Aluminum cans</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Plastic packaging waste</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Plastic bags</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Other plastic</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Textile</td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>Leather</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Diapers</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td>Fine elements</td>
<td>98%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Collection system

<table>
<thead>
<tr>
<th>Waste category</th>
<th>Bio bin</th>
<th>Rec. Mat</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garden waste</td>
<td>85%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Other biodegradable waste</td>
<td>85%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Paper</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Glass</td>
<td>3%</td>
<td>85%</td>
<td>12%</td>
</tr>
<tr>
<td>Cardboard</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Composite materials</td>
<td>5%</td>
<td>70%</td>
<td>25%</td>
</tr>
<tr>
<td>Metals – packaging and other</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Aluminum cans</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Plastic packaging waste</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Plastic bags</td>
<td>5%</td>
<td>15%</td>
<td>80%</td>
</tr>
<tr>
<td>Other plastic</td>
<td>3%</td>
<td>95%</td>
<td>2%</td>
</tr>
<tr>
<td>Textile</td>
<td>5%</td>
<td>70%</td>
<td>25%</td>
</tr>
<tr>
<td>Leather</td>
<td>5%</td>
<td>5%</td>
<td>90%</td>
</tr>
<tr>
<td>Diapers</td>
<td>5%</td>
<td>5%</td>
<td>90%</td>
</tr>
<tr>
<td>Fine elements</td>
<td>5%</td>
<td>5%</td>
<td>90%</td>
</tr>
</tbody>
</table>
Criteria's for evaluation

- GHG emissions
- Energy consumption
- Energy production
- Recycling rate
- Landfill volume
- Mass of landfilled organic waste
- N Leachate to the hydrosphere
- Economical feasibility - costs
Criteria's for evaluation - Results

![Bela Crkva Criteria Graph](image-url)
Summary and conclusion

- Data collection
- Scenario development
- Evaluation of developed scenarios and future perspectives

„Scenario analysis before making any new decisions in waste management“
THANK YOU!
ISWA WORLD CONGRESS 2016
„NOVI SAD“ SERBIA

FORWARD TOGETHER
UNITING IDEAS FOR SUCCESSFUL WASTE MANAGEMENT SOLUTIONS